938 research outputs found

    Creative Errors in the Writing of Deaf Children

    Get PDF

    Stressed detector arrays for airborne astronomy

    Get PDF
    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed

    Multitemporal Relearning with Convolutional LSTM Models for Land Use Classification

    Get PDF
    In this article, we present a novel hybrid framework, which integrates spatial–temporal semantic segmentation with postclassification relearning, for multitemporal land use and land cover (LULC) classification based on very high resolution (VHR) satellite imagery. To efficiently obtain optimal multitemporal LULC classification maps, the hybrid framework utilizes a spatial–temporal semantic segmentation model to harness temporal dependency for extracting high-level spatial–temporal features. In addition, the principle of postclassification relearning is adopted to efficiently optimize model output. Thereby, the initial outcome of a semantic segmentation model is provided to a subsequent model via an extended input space to guide the learning of discriminative feature representations in an end-to-end fashion. Last, object-based voting is coupled with postclassification relearning for coping with the high intraclass and low interclass variances. The framework was tested with two different postclassification relearning strategies (i.e., pixel-based relearning and object-based relearning) and three convolutional neural network models, i.e., UNet, a simple Convolutional LSTM, and a UNet Convolutional-LSTM. The experiments were conducted on two datasets with LULC labels that contain rich semantic information and variant building morphologic features (e.g., informal settlements). Each dataset contains four time steps from WorldView-2 and Quickbird imagery. The experimental results unambiguously underline that the proposed framework is efficient in terms of classifying complex LULC maps with multitemporal VHR images

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu

    Technological and functional analysis of 80–60 ka bone wedges from Sibudu (KwaZulu-Natal, South Africa)

    Get PDF
    Fully shaped, morphologically standardized bone tools are generally considered reliable indicators of the emergence of modern behavior. We report the discovery of 23 double-beveled bone tools from ~ 80,000–60,000-year-old archaeological layers at Sibudu Cave in KwaZulu-Natal, South Africa. We analyzed the texture of use-wear on the archaeological bone tools, and on bone tool replicas experimentally used in debarking trees, processing rabbit pelts with and without an ochre compound, digging in sediment in and outside a cave, and on ethnographic artefacts. Debarking trees and digging in humus-rich soil produce use-wear patterns closely matching those observed on most Sibudu tools. This tool type is associated with three different Middle Stone Age cultural traditions at Sibudu that span 20,000 years, yet they are absent at contemporaneous sites. Our results support a scenario in which some southern African early modern human groups developed and locally maintained specific, highly standardized cultural traits while sharing others at a sub-continental scale. We demonstrate that technological and texture analyses are effective means by which to infer past behaviors and assess the significance of prehistoric cultural innovations.publishedVersio

    Technological and functional analysis of 80–60 ka bone wedges from Sibudu (KwaZulu-Natal, South Africa)

    Get PDF
    Fully shaped, morphologically standardized bone tools are generally considered reliable indicators of the emergence of modern behavior. We report the discovery of 23 double-beveled bone tools from ~ 80,000–60,000-year-old archaeological layers at Sibudu Cave in KwaZulu-Natal, South Africa. We analyzed the texture of use-wear on the archaeological bone tools, and on bone tool replicas experimentally used in debarking trees, processing rabbit pelts with and without an ochre compound, digging in sediment in and outside a cave, and on ethnographic artefacts. Debarking trees and digging in humus-rich soil produce use-wear patterns closely matching those observed on most Sibudu tools. This tool type is associated with three different Middle Stone Age cultural traditions at Sibudu that span 20,000 years, yet they are absent at contemporaneous sites. Our results support a scenario in which some southern African early modern human groups developed and locally maintained specific, highly standardized cultural traits while sharing others at a sub-continental scale. We demonstrate that technological and texture analyses are effective means by which to infer past behaviors and assess the significance of prehistoric cultural innovations

    The focused ion beam as an integrated circuit restructuring tool

    Get PDF
    One of the capabilities of focused ion beam systems is ion milling. The purpose of this work is to explore this capability as a tool for integrated circuit restructuring. Methods for cutting and joining conductors are needed. Two methods for joining conductors are demonstrated. The first consists of spinning nitrocellulose (a self‐developing resist) on the circuit, ion exposing an area, say, 7×7 μm, then milling a smaller via with sloping sidewalls through the first metal layer down to the second, e‐beam evaporating metal, and then dissolving the nitrocellulose to achieve liftoff. The resistance of these links between two metal levels varied from 1 to 7 Ω. The second, simpler method consists of milling a via with vertical sidewalls down to the lower metal layer, then reducing the milling scan to a smaller area in the center of this via, thereby redepositing the metal from the lower layer on the vertical sidewall. The short circuit thus achieved varied from 0.4 to 1.5 Ω for vias of dimensions 3×3 μm to 1×1 μm, respectively. The time to mill a 1×1 μm via with a 68 keV Ga+ beam, of 220 Pa current is 60 s. In a system optimized for this application, this milling time is expected to be reduced by a factor of at least 100. In addition, cuts have been made in 1‐μm‐thick Al films covered by 0.65 μm of SiO2. These cuts have resistances in excess of 20 MΩ. This method of circuit restructuring can work at dimensions a factor of 10 smaller than laser zapping and requires no special sites to be fabricated

    Self-reported disability in rural Malawi: prevalence, incidence, and relationship to chronic conditions

    Get PDF
    Background: Disability is a complex concept involving physical impairment, activity limitation, and participation restriction. The Washington Group developed a set of questions on six functional domains (seeing, hearing, walking, remembering, self-care, and communicating) to allow collection of comparable data on disability. We aimed to improve understanding of prevalence and correlates of disability in the low-income setting of Malawi. Methods: This study is nested in the Karonga Health and Demographic Surveillance Site in Malawi; the Washington Group questions were added to the annual survey in 2014. We used cross-sectional data from the 2014 survey to estimate the current prevalence of disability, simulate disability prevalence over the previous 12 years, and examine associations of disability with certain chronic diseases. We then reviewed the consistency of responses to the questions over time using data from the 2015 survey. Results: Of 10,863 participants, 9.6% (95% CI 9.0-10.1%) reported disability in at least one domain. Prevalence was higher among women and increased with age. Since 2004, we estimate the number of people experiencing disability has increased 1.5 times. Obesity and diabetes were associated with disability, but hypertension and HIV were not. Participants reporting “no difficulty” or “can’t do at all” for any domain were likely to report the same status one year later, whereas there was considerable movement between people describing “some difficulty” and “a lot of difficulty”. Conclusions: Disability prevalence is high and likely to increase over time. Further research into the needs of this population is crucial to ensure inclusive policies are created and sustainable development goals are met

    Resequencing of the auxiliary GABAB receptor subunit gene KCTD12 in chronic tinnitus

    Get PDF
    Tinnitus is a common and often incapacitating hearing disorder marked by the perception of phantom sounds. Susceptibility factors remain largely unknown but GABAB receptor signaling has long been implicated in the response to treatment and, putatively, in the etiology of the disorder. We hypothesized that variation in KCTD12, the gene encoding an auxiliary subunit of GABAB receptors, could help to predict the risk of developing tinnitus. Ninety-five Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCTD12 open reading frame and the adjacent 3′ untranslated region by Sanger sequencing. Allele frequencies were determined for 14 known variants of which three (rs73237446, rs34544607, and rs41287030) were polymorphic. When allele frequencies were compared to data from a large reference population of European ancestry, rs34544607 was associated with tinnitus (p = 0.04). However, KCTD12 genotype did not predict tinnitus severity (p = 0.52) and the association with rs34544607 was weakened after screening 50 additional cases (p = 0.07). Pending replication in a larger cohort, KCTD12 may act as a risk modifier in chronic tinnitus. Issues that are yet to be addressed include the effects of neighboring variants, e.g., in the KCTD12 gene regulatory region, plus interactions with variants of GABAB1 and GABAB2

    Star Formation in M51 Triggered by Galaxy Interaction

    Get PDF
    We have mapped the inner 360'' regions of M51 in the 158micron [CII] line at 55'' spatial resolution using the Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO). The emission is peaked at the nucleus, but is detectable over the entire region mapped, which covers much of the optical disk of the galaxy. There are also two strong secondary peaks at ~43% to 70% of the nuclear value located roughly 120'' to the north-east, and south-west of the nucleus. These secondary peaks are at the same distance from the nucleus as the corotation radius of the density wave pattern. The density wave also terminates at this location, and the outlying spiral structure is attributed to material clumping due to the interaction between M51 and NGC5195. This orbit crowding results in cloud-cloud collisions, stimulating star formation, that we see as enhanced [CII] line emission. The [CII] emission at the peaks originates mainly from photodissociation regions (PDRs) formed on the surfaces of molecular clouds that are exposed to OB starlight, so that these [CII] peaks trace star formation peaks in M51. The total mass of [CII] emitting photodissociated gas is ~2.6x10^{8} M_{sun}, or about 2% of the molecular gas as estimated from its CO(1-0) line emission. At the peak [CII] positions, the PDR gas mass to total gas mass fraction is somewhat higher, 3-17%, and at the secondary peaks the mass fraction of the [CII] emitting photodissociated gas can be as high as 72% of the molecular mass.... (continued)Comment: 14 pages, 6 figures, Accepted in ApJ (for higher resolution figures contact the author
    corecore